Решить Уравнение 3X²-7X+4=0 Через Дискриминант И По Теореме Виета, Найти Корни.

В алгебре решение квадратных уравнений является важной темой, которая находит свое применение во многих областях науки и техники. Один из способов решения квадратного уравнения - использование дискриминанта и теоремы Виета. Давайте рассмотрим процесс решения уравнения 3x²-7x+4=0 и найдем его корни.

Для начала, определим коэффициенты уравнения. В данном случае, коэффициенты равны a=3, b=-7 и c=4.

Шаг 1: Вычисление дискриминанта Дискриминант D вычисляется по формуле D = b² - 4ac. Подставим значения коэффициентов в формулу и вычислим: D = (-7)² - 4 * 3 * 4 = 49 - 48 = 1.

Шаг 2: Анализ значения дискриминанта Значение дискриминанта D позволяет определить характер корней уравнения. Если D > 0, то уравнение имеет два различных действительных корня. Если D = 0, то уравнение имеет один действительный корень (корень кратности 2). Если D < 0, то уравнение не имеет действительных корней.

В нашем случае, D = 1, что означает, что уравнение имеет два различных действительных корня.

Шаг 3: Нахождение корней уравнения через формулы Корни уравнения могут быть найдены с использованием формул x₁ = (-b - √D) / (2a) и x₂ = (-b + √D) / (2a).

Подставим значения коэффициентов и дискриминанта в формулы и вычислим корни:

x₁ = (-(-7) - √1) / (2 * 3) = (7 - 1) / 6 = 6/6 = 1.

x₂ = (-(-7) + √1) / (2 * 3) = (7 + 1) / 6 = 8/6 = 4/3.

Таким образом, решением уравнения 3x²-7x+4=0 являются два действительных корня: x₁ = 1 и x₂ = 4/3.

Используя метод дискриминанта и теоремы Виета, мы успешно решили данное уравнение и определили его корни. ?ти навыки решения квадратных уравнений являются важными и могут быть полезными в различных математических и научно-технических задачах.

Вместе с данным постом часто просматривают:

Автор Статьи


Зарегистрирован: 2011-07-23 05:15:35
Баллов опыта: 552966
Всего постов на сайте: 0
Всего комментарий на сайте: 0
Dima Manisha

Dima Manisha

Эксперт Wmlog. Профессиональный веб-мастер, SEO-специалист, дизайнер, маркетолог и интернет-предприниматель.