- 10, Feb 2020
- #1
Нетология
Профессия Аналитик данных
Описание:
Чему вы научитесь на курсе
- Работать с сырыми данными
Информация для отчетов теперь у вас в руках.
От получения данных из разных источников с помощью SQL до создания рабочих моделей и анализа с помощью Python.
- Работать с заказчиками данных
Говорите с бизнесом на одном языке.
Научим собирать и обрабатывать запросы на аналитику, предоставлять метрики в понятном виде и определять точку приложения усилий.
- Работать с Big Data
Получайте конкурентное преимущество: лучшие компании работают с большими данными.
Научим использовать в работе актуальные инструменты анализа данных: Hadoop и NoSQL.
- Выдвигать и тестировать гипотезы
Берите в работу сложные задачи и будьте уверены в своих подходах к достижению цели.
Научим приоритизировать гипотезы и подбирать эффективные инструменты для их проверки.
- Анализировать данные
Понимание бизнеса позволяет расти быстрее и увеличивать свой капитал.
Научим находить инсайты в данных и предлагать бизнесу оптимальные сценарии роста.
1. SQL и получение данных
составление SQL запросов к БД
создание новых таблиц с помощью джоинов
группировка и фильтрация данных из БД
импорт и экспорт данных в БД
изучение характеристик данных с помощью аналитических функций SQL
использование PostgreSQL, MongoDB
работа с разными форматами файлов
2. Python для анализа данных
работа в Jupyter-Notebook
работа с pandas в таблицах
работа с матрицами и векторами в Python
понимание основных математических понятий, лежащих в основе анализа данных
работа с библиотекой numpy
понимание основ описательной статистики
проведение основных статистических тестов (z-test, f-test, chi-2 test)
проектирование экспериментов
подключение к БД из Python
3. Эксплоративный анализ и предобработка данных
визуализация данных с помощью библиотек seaborn, plotly
описание основных проблемы данных
проверка данных на полноту, целостность, валидность, наличие шумов, ошибок и пропусков
очистка данных с помощью numpy и pandas
сокращение размерности данных алгоритмами PCA, LDA, NMF
4. Статистика для аналитиков
Вы научитесь оценивать, связаны ли признаки, а также делать обоснованные выводы о том, значима ли эта связь статистически.
Узнаете о статистических гипотезах, способах их проверки и об основных статистических критериях, которые для этого разработаны.
Рассмотрите случайные события, их свойства и операции над ними.
5. Аналитика больших данных
Часто аналитик данных нужен именно в тех компания, которые накопили свою big data, и аналитику нужно владеть не только стандартными инструментами вроде статистики и SQL, но и знать основные принципы работы с большими данными, иметь представление о компонентах экосистемы Hadoop и облачных платформах для реализации решений по big data.
Обо всем этом мы поговорим в модуле про аналитику больших данных. 6. Работа в команде Вы научитесь работать в команде.
Узнаете, кто является заказчиком аналитики в компании и как работать с разными типами заказчиков.
Вы получите базовые знания об иерархии метрик, которые позволят вам говорить на одном языке с коллегами, выдвигать рабочие гипотезы и строить понятную отчётность.
Дипломная работа
В рамках дипломного проекта вы примените полученные навыки для решения своих текущих профессиональных задач: это может быть дашборд с визуализацией ключевых бизнес-показателей, комплекс предложений по оптимизации стратегии компании, поиск и обоснование точек роста бизнеса и т. д. Вы получаете готовый кейс для уверенного роста и перехода на новую должность.
Подробнее:
Скачать: Скрытая информация :: Авторизуйтесь для просмотра »
Описание:
Чему вы научитесь на курсе
- Работать с сырыми данными
Информация для отчетов теперь у вас в руках.
От получения данных из разных источников с помощью SQL до создания рабочих моделей и анализа с помощью Python.
- Работать с заказчиками данных
Говорите с бизнесом на одном языке.
Научим собирать и обрабатывать запросы на аналитику, предоставлять метрики в понятном виде и определять точку приложения усилий.
- Работать с Big Data
Получайте конкурентное преимущество: лучшие компании работают с большими данными.
Научим использовать в работе актуальные инструменты анализа данных: Hadoop и NoSQL.
- Выдвигать и тестировать гипотезы
Берите в работу сложные задачи и будьте уверены в своих подходах к достижению цели.
Научим приоритизировать гипотезы и подбирать эффективные инструменты для их проверки.
- Анализировать данные
Понимание бизнеса позволяет расти быстрее и увеличивать свой капитал.
Научим находить инсайты в данных и предлагать бизнесу оптимальные сценарии роста.
1. SQL и получение данных
составление SQL запросов к БД
создание новых таблиц с помощью джоинов
группировка и фильтрация данных из БД
импорт и экспорт данных в БД
изучение характеристик данных с помощью аналитических функций SQL
использование PostgreSQL, MongoDB
работа с разными форматами файлов
2. Python для анализа данных
работа в Jupyter-Notebook
работа с pandas в таблицах
работа с матрицами и векторами в Python
понимание основных математических понятий, лежащих в основе анализа данных
работа с библиотекой numpy
понимание основ описательной статистики
проведение основных статистических тестов (z-test, f-test, chi-2 test)
проектирование экспериментов
подключение к БД из Python
3. Эксплоративный анализ и предобработка данных
визуализация данных с помощью библиотек seaborn, plotly
описание основных проблемы данных
проверка данных на полноту, целостность, валидность, наличие шумов, ошибок и пропусков
очистка данных с помощью numpy и pandas
сокращение размерности данных алгоритмами PCA, LDA, NMF
4. Статистика для аналитиков
Вы научитесь оценивать, связаны ли признаки, а также делать обоснованные выводы о том, значима ли эта связь статистически.
Узнаете о статистических гипотезах, способах их проверки и об основных статистических критериях, которые для этого разработаны.
Рассмотрите случайные события, их свойства и операции над ними.
5. Аналитика больших данных
Часто аналитик данных нужен именно в тех компания, которые накопили свою big data, и аналитику нужно владеть не только стандартными инструментами вроде статистики и SQL, но и знать основные принципы работы с большими данными, иметь представление о компонентах экосистемы Hadoop и облачных платформах для реализации решений по big data.
Обо всем этом мы поговорим в модуле про аналитику больших данных. 6. Работа в команде Вы научитесь работать в команде.
Узнаете, кто является заказчиком аналитики в компании и как работать с разными типами заказчиков.
Вы получите базовые знания об иерархии метрик, которые позволят вам говорить на одном языке с коллегами, выдвигать рабочие гипотезы и строить понятную отчётность.
Дипломная работа
В рамках дипломного проекта вы примените полученные навыки для решения своих текущих профессиональных задач: это может быть дашборд с визуализацией ключевых бизнес-показателей, комплекс предложений по оптимизации стратегии компании, поиск и обоснование точек роста бизнеса и т. д. Вы получаете готовый кейс для уверенного роста и перехода на новую должность.
Подробнее:
https://netology.ru/programs/data-analyst#/
Скачать: Скрытая информация :: Авторизуйтесь для просмотра »