"Partial Differential Equations of Applied Mathematics" - это классический учебник, который предлагает полное руководство по моделированию, характеризации и решению уравнений в частных производных (УЧП). В третьем издании автор предоставляет всю необходимую теорию и инструменты для решения задач с помощью точных, приближенных и численных методов. Книга содержит новый материал, включая две новые главы, которые представляют конечно-разностные и конечно-элементные методы для решения УЧП, а также новый раздел в конце каждой оригинальной главы, демонстрирующий использование специально созданных процедур в Maple, которые решают УЧП с помощью многих методов, представленных в главах. Книга также содержит множество реальных примеров из области инженерных и физических наук, что помогает проиллюстрировать, как теория и методы применяются к практическим проблемам. Рекомендуется для студентов старших курсов и аспирантов в области инженерии, науки и прикладной математики, а также для профессионалов в этих областях.
This new edition features recent advances in the modelling, understanding and solution processes for Partial Differential Equations. In the third edition of this widely used text, Doraiswamy offers a detailed presentation of the fundamentals of partial differential equations with over 500 problems for student practice.
Электронная Книга «Partial Differential Equations of Applied Mathematics» написана автором Группа авторов в году.
Минимальный возраст читателя: 0
Язык: Английский
ISBN: 9781118031407
Описание книги от Группа авторов
This new edition features the latest tools for modeling, characterizing, and solving partial differential equations The Third Edition of this classic text offers a comprehensive guide to modeling, characterizing, and solving partial differential equations (PDEs). The author provides all the theory and tools necessary to solve problems via exact, approximate, and numerical methods. The Third Edition retains all the hallmarks of its previous editions, including an emphasis on practical applications, clear writing style and logical organization, and extensive use of real-world examples. Among the new and revised material, the book features: * A new section at the end of each original chapter, exhibiting the use of specially constructed Maple procedures that solve PDEs via many of the methods presented in the chapters. The results can be evaluated numerically or displayed graphically. * Two new chapters that present finite difference and finite element methods for the solution of PDEs. Newly constructed Maple procedures are provided and used to carry out each of these methods. All the numerical results can be displayed graphically. * A related FTP site that includes all the Maple code used in the text. * New exercises in each chapter, and answers to many of the exercises are provided via the FTP site. A supplementary Instructor's Solutions Manual is available. The book begins with a demonstration of how the three basic types of equations-parabolic, hyperbolic, and elliptic-can be derived from random walk models. It then covers an exceptionally broad range of topics, including questions of stability, analysis of singularities, transform methods, Green's functions, and perturbation and asymptotic treatments. Approximation methods for simplifying complicated problems and solutions are described, and linear and nonlinear problems not easily solved by standard methods are examined in depth. Examples from the fields of engineering and physical sciences are used liberally throughout the text to help illustrate how theory and techniques are applied to actual problems. With its extensive use of examples and exercises, this text is recommended for advanced undergraduates and graduate students in engineering, science, and applied mathematics, as well as professionals in any of these fields. It is possible to use the text, as in the past, without use of the new Maple material.