Книга "Data Mining for Business Analytics: Concepts, Techniques, and Applications with JMP Pro®" представляет собой прикладной и интерактивный подход к добыче данных. Используя программный пакет JMP Pro® от SAS Institute, авторы книги демонстрируют на практике ключевые методы добычи данных, такие как визуализация данных, сокращение размерности, кластеризация, линейная и логистическая регрессия, классификация и регрессионные деревья, дискриминантный анализ, наивный Байес, нейронные сети, моделирование воздействия, ансамблевые модели и прогнозирование временных рядов. Книга содержит подробные резюме ключевых тем, примеры и упражнения в конце каждой главы, а также множество данных для кейсов, упражнений и презентаций на сайте-компаньоне.
"Data Mining for Business Analytics: Concepts, Techniques, and Applications with JMP Pro®" - отличный учебник для студентов магистратуры и аспирантов, изучающих добычу данных, прогностическую аналитику и бизнес-аналитику. Книга также будет полезна для ученых, аналитиков, исследователей и практиков, работающих с аналитикой в области управления, финансов, маркетинга, информационных технологий, здравоохранения, образования и других областях с большим объемом данных. Авторы книги - Гали Шмуэли, Питер Брюс, Миа Стивенс и Нитин Патель - являются экспертами в области бизнес-аналитики и статистических методов.
Электронная Книга «Data Mining for Business Analytics» написана автором Galit Shmueli в году.
Минимальный возраст читателя: 0
Язык: Английский
ISBN: 9781118956625
Описание книги от Galit Shmueli
Data Mining for Business Analytics: Concepts, Techniques, and Applications with JMP Pro® presents an applied and interactive approach to data mining. Featuring hands-on applications with JMP Pro®, a statistical package from the SAS Institute, the book uses engaging, real-world examples to build a theoretical and practical understanding of key data mining methods, especially predictive models for classification and prediction. Topics include data visualization, dimension reduction techniques, clustering, linear and logistic regression, classification and regression trees, discriminant analysis, naive Bayes, neural networks, uplift modeling, ensemble models, and time series forecasting. Data Mining for Business Analytics: Concepts, Techniques, and Applications with JMP Pro® also includes: Detailed summaries that supply an outline of key topics at the beginning of each chapter End-of-chapter examples and exercises that allow readers to expand their comprehension of the presented material Data-rich case studies to illustrate various applications of data mining techniques A companion website with over two dozen data sets, exercises and case study solutions, and slides for instructors Data Mining for Business Analytics: Concepts, Techniques, and Applications with JMP Pro® is an excellent textbook for advanced undergraduate and graduate-level courses on data mining, predictive analytics, and business analytics. The book is also a one-of-a-kind resource for data scientists, analysts, researchers, and practitioners working with analytics in the fields of management, finance, marketing, information technology, healthcare, education, and any other data-rich field. Galit Shmueli, PhD, is Distinguished Professor at National Tsing Hua University’s Institute of Service Science. She has designed and instructed data mining courses since 2004 at University of Maryland, Statistics.com, Indian School of Business, and National Tsing Hua University, Taiwan. Professor Shmueli is known for her research and teaching in business analytics, with a focus on statistical and data mining methods in information systems and healthcare. She has authored over 70 journal articles, books, textbooks, and book chapters, including Data Mining for Business Analytics: Concepts, Techniques, and Applications in XLMiner®, Third Edition, also published by Wiley. Peter C. Bruce is President and Founder of the Institute for Statistics Education at www.statistics.com He has written multiple journal articles and is the developer of Resampling Stats software. He is the author of Introductory Statistics and Analytics: A Resampling Perspective and co-author of Data Mining for Business Analytics: Concepts, Techniques, and Applications in XLMiner ®, Third Edition, both published by Wiley. Mia Stephens is Academic Ambassador at JMP®, a division of SAS Institute. Prior to joining SAS, she was an adjunct professor of statistics at the University of New Hampshire and a founding member of the North Haven Group LLC, a statistical training and consulting company. She is the co-author of three other books, including Visual Six Sigma: Making Data Analysis Lean, Second Edition, also published by Wiley. Nitin R. Patel, PhD, is Chairman and cofounder of Cytel, Inc., based in Cambridge, Massachusetts. A Fellow of the American Statistical Association, Dr. Patel has also served as a Visiting Professor at the Massachusetts Institute of Technology and at Harvard University. He is a Fellow of the Computer Society of India and was a professor at the Indian Institute of Management, Ahmedabad, for 15 years. He is co-author of Data Mining for Business Analytics: Concepts, Techniques, and Applications in XLMiner®, Third Edition, also published by Wiley.