Сложение Как Простейшее И Самое Сложное Симметричное Шифрование На Примере Python

Пока вы это читаете, на нашей планете происходят миллиарды и триллионы вычислений: Алексей решил войти в свой аккаунт Google, Дима оплатил билеты на самолет, Настя написала учителю, чтобы она дала ей дополнительное задание.

Все это невозможно сделать без надлежащего шифрования.

Никто не хочет, чтобы весь мир увидел их обнаженные тела.

Для передачи ваших данных используется шифрование с открытым ключом.

Это безопасно, но может напугать новичков в криптографии.

Тот же RSA, AES, всё это непонятно тому, кто хочет сделать что-то хорошо защищённое от посторонних глаз.

Хочу представить метод, которого я больше нигде не видел (если он существует, просто я о нем не знал, напишите в комментариях) и который будет понятен абсолютно каждому.

Но в отличие от RSA, Диффи-Хеллмана, Эль-Гамаля я покажу пример симметричного шифрования.

Да, он не подходит для передачи между двумя неизвестными.

У него нет открытого и закрытого ключа, но это не делает его слабее.

Мы все занимались сложением в начальной школе.

46+5000=5046. Такие действия компьютер делает без проблем, но давайте представим RSA. м^п мод х.

Всё, давай плавать.

Вся сложность алгоритма RSA заключается в его факторизации.

Кроме того, компьютеру нужен большой и быстрый «ум», чтобы вычислить m^n. У нас также есть шифрование, при котором зашифрованный текст без точно такого же ключа выдает своего рода «ошибку», что позволяет выбрать ключ.



Перейдем к методу

Для начала создадим массив чисел для.

6. Это небольшой размер, поэтому желательно до 2048 или больше.

Заполним его случайным образом или заранее заданными числами.

В итоге у меня получился массив [4643634,1234125,8975321,6756421,96874621,5314123].

Далее подготовим платформу:

   

key = [4643634,1234125,8975321,6756421,96874621,5314123] text = [] for __ in list(input()):

Теги: #python #криптография #дополнение
Вместе с данным постом часто просматривают: