Книга "Моделирование структурных уравнений" является полезным руководством для применения SEM, демонстрируя систематически различные модели SEM с использованием программы Mplus. Она фокусируется на концептуальных и практических аспектах SEM, демонстрируя основные концепции и примеры различных моделей SEM, а также обновления многих продвинутых методов, включая анализ подтверждающего фактора (CFA) с категориальными показателями, бифакторную модель, байесовскую CFA-модель, модель теории ответов на элементы (IRT), модель градационного ответа (GRM), множественную импутацию (MI) пропущенных значений, правдоподобные значения скрытых переменных, моделирование модерированной медиации, байесовское SEM, моделирование скрытого роста (LGM) с индивидуально изменяющимися временными наблюдениями, динамическое структурное моделирование уравнений (DSEM), остаточное динамическое структурное моделирование уравнений (RDSEM), тестирование инвариантности измерения приборов с категориальными переменными, лонгитюдное латентное классификационное анализ (LLCA), анализ латентных переходов (LTA), моделирование смеси роста (GMM) с ковариатами и дистальным результатом, ручную реализацию метода BCH и трехшаговый метод для моделирования смеси, анализ мощности метода Монте-Карло для различных моделей SEM и оценку размера выборки для модели латентного класса (LCA). В книге также представлены инструкции по спецификации, оценке, оценке и модификации моделей с помощью программы Mplus версии 8.2. Книга предназначена как для преподавателей, так и для исследователей, написана в нематематических терминах, и предоставляет шаг за шагом инструкции по моделированию, оценке и интерпретации результатов анализа данных с использованием реальных наборов данных. В целом, "Моделирование структурных уравнений" является отличной книгой для исследователей и выпускников, занимающихся SEM, которые хотят понимать теорию и узнать, как строить свои собственные SEM-модели с помощью Mplus.

Электронная Книга «Structural Equation Modeling - Jichuan Wang» написана автором Jichuan Wang в году.

Минимальный возраст читателя: 0

Язык: Английский

ISBN: 9781119422716


Описание книги от Jichuan Wang

Presents a useful guide for applications of SEM whilst systematically demonstrating various SEM models using M plus Focusing on the conceptual and practical aspects of Structural Equation Modeling (SEM), this book demonstrates basic concepts and examples of various SEM models, along with updates on many advanced methods, including confirmatory factor analysis (CFA) with categorical items, bifactor model, Bayesian CFA model, item response theory (IRT) model, graded response model (GRM), multiple imputation (MI) of missing values, plausible values of latent variables, moderated mediation model, Bayesian SEM, latent growth modeling (LGM) with individually varying times of observations, dynamic structural equation modeling (DSEM), residual dynamic structural equation modeling (RDSEM), testing measurement invariance of instrument with categorical variables, longitudinal latent class analysis (LLCA), latent transition analysis (LTA), growth mixture modeling (GMM) with covariates and distal outcome, manual implementation of the BCH method and the three-step method for mixture modeling, Monte Carlo simulation power analysis for various SEM models, and estimate sample size for latent class analysis (LCA) model. The statistical modeling program Mplus Version 8. 2 is featured with all models updated. It provides researchers with a flexible tool that allows them to analyze data with an easy-to-use interface and graphical displays of data and analysis results. Intended as both a teaching resource and a reference guide, and written in non-mathematical terms, Structural Equation Modeling: Applications Using Mplus, 2nd edition provides step-by-step instructions of model specification, estimation, evaluation, and modification. Chapters cover: Confirmatory Factor Analysis (CFA); Structural Equation Models (SEM); SEM for Longitudinal Data; Multi-Group Models; Mixture Models; and Power Analysis and Sample Size Estimate for SEM. Presents a useful reference guide for applications of SEM while systematically demonstrating various advanced SEM models Discusses and demonstrates various SEM models using both cross-sectional and longitudinal data with both continuous and categorical outcomes Provides step-by-step instructions of model specification and estimation, as well as detailed interpretation of M plus results using real data sets Introduces different methods for sample size estimate and statistical power analysis for SEM Structural Equation Modeling is an excellent book for researchers and graduate students of SEM who want to understand the theory and learn how to build their own SEM models using M plus.



Похожие книги

Информация о книге

  • Рейтинг Книги:
  • Автор: Jichuan Wang
  • Категория: Математика
  • Тип: Электронная Книга
  • Язык: Английский
  • Издатель: John Wiley & Sons Limited
  • ISBN: 9781119422716

Популярные книги