- 15, Apr 2018
- #1
Машинное обучение с использованием библиотеки Н2О
Кук Даррен
https://openhide.biz/attachments/h2o-jpg.9203/
Машинное обучение наконец-то достигло стадии зрелости.
При помощи программного обеспечения H2O вы можете решать задачи машинного обучения и анализа данных с использованием простого в использовании и открытого (open source) фреймворка, который поддерживает большое количество операционный систем и языков программирования, а также масштабируется для обработки больших данных.
Это практическое руководство научит вас использовать алгоритмы машинного обучения, реализованные в H2O, с упором на наиболее важные для продуктивной работы аспекты.
Если вы умеете программировать на R или Python, хотя бы немного знаете статистику и имеете опыт обработки данных, эта книга Даррена Кука познакомит вас с основами использования H2O и поможет вам поэкспериментировать с машинным обучением на наборах данных разного размера.
Вы изучите несколько современных алгоритмов машинного обучения: глубокое обучение, «случайный лес», обучение на неразмеченных данных и ансамбли моделей.
Прочтя эту книгу, вы:
• узнаете, как импортировать данные в H2O, преобразовывать их и экспортировать их из H2O;
• изучите основные концепции машинного обучения, такие как перекрестная проверка и проверочные наборы данных;
• поработаете с тремя разными наборами данных, решая задачи регрессии, бинарной и многоклассовой классификации;
• используете H2O для анализа каждого набора данных при помощи четырех алгоритмов машинного обучения;
• поймете, как работает кластерный анализ и другие алгоритмы обучения на неразмеченных данных.
Понимание процесса построения моделей, тупиковых ситуаций и заканчивающихся провалом экспериментов является не менее важным, чем изучение кода!
Машинное обучение с использованием библиотеки Н2О
Скрытая информация :: Авторизуйтесь для просмотра »
https://openhide.biz/attachments/h2o-jpg.9203/
Машинное обучение наконец-то достигло стадии зрелости.
При помощи программного обеспечения H2O вы можете решать задачи машинного обучения и анализа данных с использованием простого в использовании и открытого (open source) фреймворка, который поддерживает большое количество операционный систем и языков программирования, а также масштабируется для обработки больших данных.
Это практическое руководство научит вас использовать алгоритмы машинного обучения, реализованные в H2O, с упором на наиболее важные для продуктивной работы аспекты.
Если вы умеете программировать на R или Python, хотя бы немного знаете статистику и имеете опыт обработки данных, эта книга Даррена Кука познакомит вас с основами использования H2O и поможет вам поэкспериментировать с машинным обучением на наборах данных разного размера.
Вы изучите несколько современных алгоритмов машинного обучения: глубокое обучение, «случайный лес», обучение на неразмеченных данных и ансамбли моделей.
Прочтя эту книгу, вы:
• узнаете, как импортировать данные в H2O, преобразовывать их и экспортировать их из H2O;
• изучите основные концепции машинного обучения, такие как перекрестная проверка и проверочные наборы данных;
• поработаете с тремя разными наборами данных, решая задачи регрессии, бинарной и многоклассовой классификации;
• используете H2O для анализа каждого набора данных при помощи четырех алгоритмов машинного обучения;
• поймете, как работает кластерный анализ и другие алгоритмы обучения на неразмеченных данных.
Понимание процесса построения моделей, тупиковых ситуаций и заканчивающихся провалом экспериментов является не менее важным, чем изучение кода!
Машинное обучение с использованием библиотеки Н2О
Скрытая информация :: Авторизуйтесь для просмотра »