Эта книга посвящена компьютерным методам решения статистических обратных задач большого масштаба и представляет собой введение в статистические байесовские и частотные методологии. Обсуждаются недавние достижения в области методов приближения, а также методы фильтрации Калмана и подходы на основе оптимизации для решения обратных задач. Цель состоит в том, чтобы объединить перспективы исследователей из областей ассимиляции данных, статистики, крупномасштабной оптимизации, прикладной и вычислительной математики, высокопроизводительных вычислений и передовых приложений. Решение больших масштабов обратных задач критически зависит от методов снижения вычислительных затрат. Недавние исследовательские подходы решают эту проблему различными способами. Многие из компьютерных фреймворков, представленных в этой книге, основаны на современных методах моделирования прямой задачи, таких как быстрые решатели уравнений в частных производных, модели с пониженным порядком и эмуляторы прямой задачи, стохастические спектральные аппроксимации и ансамблевые методы.
Электронная Книга «Large-Scale Inverse Problems and Quantification of Uncertainty» написана автором Группа авторов в году.
Минимальный возраст читателя: 0
Язык: Английский
ISBN: 9780470685860
Описание книги от Группа авторов
This book focuses on computational methods for large-scale statistical inverse problems and provides an introduction to statistical Bayesian and frequentist methodologies. Recent research advances for approximation methods are discussed, along with Kalman filtering methods and optimization-based approaches to solving inverse problems. The aim is to cross-fertilize the perspectives of researchers in the areas of data assimilation, statistics, large-scale optimization, applied and computational mathematics, high performance computing, and cutting-edge applications. The solution to large-scale inverse problems critically depends on methods to reduce computational cost. Recent research approaches tackle this challenge in a variety of different ways. Many of the computational frameworks highlighted in this book build upon state-of-the-art methods for simulation of the forward problem, such as, fast Partial Differential Equation (PDE) solvers, reduced-order models and emulators of the forward problem, stochastic spectral approximations, and ensemble-based approximations, as well as exploiting the machinery for large-scale deterministic optimization through adjoint and other sensitivity analysis methods. Key Features: • Brings together the perspectives of researchers in areas of inverse problems and data assimilation. • Assesses the current state-of-the-art and identify needs and opportunities for future research. • Focuses on the computational methods used to analyze and simulate inverse problems. • Written by leading experts of inverse problems and uncertainty quantification. Graduate students and researchers working in statistics, mathematics and engineering will benefit from this book.